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STRESSES AROUND A CIRCULAR HOLE IN A
SHALLOW CONICAL SHELL

B. BASAVA RAJU, M. V. V. MURTHY and RAMESH CHANDRA

National Aeronautical Laboratory
Bangalore-J7. India

Abstract-Analytical solutions are presented for the stresses in a shallow conical shell having a circular hole on
its lateral surface. The shell which is closed at both ends. is subjected to a uniform axial tension and internal
pressure balanced only by distributed transverse shear forces at the boundary of the hole. The method of analysis
involves perturbations in parameters defining curvature and the cone angle of the shell (/3 and c respectively).
For small values of these parameters, significant membrane and bending stresses are obtained retaining terms of
order of /32 and 02.
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Poisson's ratio
Young's modulus
thickness of the shell
second principal radius of curvature in the circumferential direction at the centre of the hole
(Fig. I)
semicone angle
radius of the hole

Eh3

-~~-2 ' bending rigidity
12(l-v)

)[12(1- v2)]

Eh2 ' a constant

[3(1 - v2)]* '0
2 (Roh)t non-dimensional curvature parameter

'0 tan IX
~~-; non-dimensional parameter

Ro

Euler-Masceroni's constant (In y = 0'5772)
uniform internal pressure
total axial load
pRo, internal pressure constant

P
~~~-;;2-' axial load constant
2nRo cos IX

polar coordinates with apex as the origin (Fig. la)
polar coordinates with the centre of the hole as the origin (Fig. la)
angle between sand' (Fig. 1a)
membrane forces in polar coordinates with apex as the origin
membrane forces in polar coordinates with the centre of the hole as the origin (Fig. 2)
stress couples in polar coordinates with the centre of the hole as the origin (Fig. 2)
transverse shear and effective transverse shear per unit length of shell element (Fig. 2)
normal displacement of a point on the middle surface of the shell, positive outwards
stress function
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c/J complex stress-displacement function (W - imF), i = J - I
H~1)[J(2i)prJ Hankel functions of first kind and nth order
superscripts Tcorresponds to total solution: A bar (-) corresponds to initial undisturbed stress system

1. INTRODUCTION

THE determination of the state of stress around circular openings in cylindrical shells has
received considerable attention in recent years [1-3]. On the other hand, a systematic
analysis of stresses around openings in conical shells is still not available. A first attempt
at an approximate analysis of stresses around circular opening in conical shell was made

o~~'-----r""O-/€-~-'-:_-_-_-_._-_~_~:-+--'-------+--_xro

FIG. l(a). Conical shell developed on a flat surface.

p....
FIG. l(b). Section of conical shell.
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(la)

by Guz [4]. Perturbation method was used to determine the membrane state of stress due
to axial and torsional loads. However, due to certain errors in the differential equations,
these solutions are incorrect. These errors are eliminated in this paper and the work is
extended to include the important case of internal pressure. Further, both the bending and
membrane solutions are obtained for small values of the parameters defining the curvature
and the cone angle (13 and e respectively) by perturbation method. Therefore, the present
study is a first step to obtain a systematic solution for this problem. Formulae, from which
the membrane and bending stresses can be computed, are presented and numerical results
are given for various values of these parameters.

2. THE GOVERNING EQUATIONS

2.1 The differential equation

The differential equations for shallow thin shells are given in curvilinear co-ordinates
in [5]. In these equations, if the non-dimensional co-ordinates s, t/J of a conical shell are
substituted, the following two governing equations, involving the membrane stress function
F and the normal displacement W, result

V4W(s, t/J)+ ro a
2
F(s, t/J) prri

Ds tan IX as2 D

(l b)

where

(
a2 1 a 1 a2 ) 2

V
4

= as2+~ as + S2 at/J2 .

By defining a new function cjJ = W - imF, the differential equations (la) and (l b) reduce to
a single equation

(2)

where

J[12(l- v2
)]

m = Eh2

[3(l-v2)F/4 ro .
13 = 2 (R

o
h)1/2' IS a curvature parameter

and

ro tan IX
e = R

o
' defines the cone angle.

We now look upon this problem as a sum of the initial problem corresponding to the
uniform stresses in the absence of hole and the residual problem corresponding to the
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additional stresses arising due to the hole. We denote the quantities corresponding to the
initial problem by iP, w, F, Nr • •. etc. and those corresponding to the total problem by
<pT, W T

, FT
, N;, etc. We get the total solution as

<V = iP+¢,
FT = F+F,

wT = W+W,

N; = N r + N r, etc.

Here, the symbols ¢, W, F, N r . " etc. correspond to the residual problem. For the residual
problem, equation (2) reduces to a homogeneous equation

By substituting,

(3)

equation (3) becomes

s sin t/J = y,
1

s cos t/J = -+x,
E

2.2 Stress resultants

In (r, e) polar co-ordinates, the stress resultants are determined by

l(laF I a2F)
N r = r~ -;: ar +r2ae2

I a2 F
No = 2:>2

r o ur

NOr = -:6 :r(~ ~~)
D(a2W V a2w vaw)

M r = r6 ar2+ r2 ae2+ ~ ar

D( I a2w Iaw a2w)
M o = ~ r2 ae2+-;: a;:-+v ar2

D(l- V)( I a2w laW)
M ro = M or = r6 ~ arae - r2 ae

Qi = D[~V2W + (I-v) ~(~ a2W)J
.~ ,ar r ar r ae2,

where Qi is the effective transverse shear

* _ l·aMro
Qr - Q'+-r----aG'

The positive stress resultants are shown on a shell element in Fig. 2.

(4)

(5)
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(a)

(b)

FIG. 2. Shell eJemenI: (a) stress resultants; (b) stress couples.

2.3 The boundary conditions

The boundary conditions at r = 1 are:

N; = O}
N~~ = 0

M, = 0

2"fQ: r dO = nr6P (for the case of internal pressure)
o

and Q: = 0 (for the case of tension)

3. METHOD OF ANALYSIS

(6a)

(6b)

The method of analysis involves perturbations with respect to the parameters f3 and c.
The hole is assumed to be small enough so that fJ ~ 1, i.e.,

ro/.J(Roh) < 1
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or

In other words,
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(7)

Hence, even for rf. as large as 45°, 6 will be a small quantity for thin shells for which
h/Ro ~ 1. Therefore, the complex stress-displacement function and all the stress resultants
can be expressed in series in powers of 6.

00

c/> = L 6
j

c/>(j)
j= 0

00

N r = L 6
j N r(j)

j=O

00

No = L 6iNo(j)
j= 0

00

Nro = L ejNro(j)
j=O

00

M r = L 6
j M r (j)

j= 0

00

M o = L 6
j Mo(j)' etc.

j=O

(8)

Later it will be found that it is necessary to expand each one of the terms in the 6 power
series further in even powers of p, and products of even powers of p and powers of In p.
For instance

We use similar expansions for W, F, N r, No, N rO' M" M o, M ro, Qr and Qo
We now substitute

and

in equation (4). Expanding in powers of 6 and collecting coefficients of 6
j
, we obtain

a2,+.. (j- 1)

<74,+.. 8 'p2 'V(j) 'p2 ~ L ,+..
v 'V(j)+ I ax2 = I f..., (j-n)'V(n)

n=O

(9)
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where L U- n) is a differential operator. For example,

82 82

L(1) = 8x-
8

2- l6Y-88
x x. Y

8
2

8
2

( 8
2

8
2

)L(2) = 4(y2_2x2)_+32xy--+ 8y2 --- .
8x2 8x . 8y 8x2 8y2

4. SOLUTION FOR SMALL VALVES OF E AND ~

4.1

999

(lOa)

(lOb)

The membrane and bending solutions will be obtained by considering only the first
three terms of the series in equations (8), namely

<p = <p(O) + e<p(l) + e2<P(2) + ...
N r = N r(o)+eNr(1)+e2N r(2)+ .

N 8 = N 8(o) +eN8(1) +e2N 8(2) + .
M 8 = M 8(o)+eM8(1)+e2M 8(2)+ .

For this approximation, equation (9) reduces to three differential equations for <p(O)' <P(1)
and <P(2) given by

(lla)

(lIb)

(lIe)V4<p(2) +8ifP 8~~~2) = if32{L(1)[<p(l)] + L(2)[<P(O)]}'

The differential operators L(1) and L(2) are defined in equations (lOa) and (lOb).
Equation (lla) is same as the well-known shallow shell equation for cylindrical shells.

In fact, solving this equation with its boundary conditions is actually equivalent to solving
the problem of a circular opening in a cylindrical shell, for which a perturbation solution
in f3 has already been obtained by Lurie [2] for both the membrane and bending cases.
Therefore, no attempt is made here to solve this equation with its associated boundary
conditions. In this paper, we obtain a solution of equation (11 b) and (1 Ie) and add it to the
corrected Lurie's solution [3] for equation (1la). The solution of each of the equations
(11 b) and (1 Ie) consists of two parts, namely the complimentary solution and the particular
integral. The complimentary solution is similar to that obtained by Lurie [2] and Van
dyke [1], except that here we have to consider all the terms which are symmetric with
respect to x-axis. This solution can be expressed as a product of Krylov functions, Hankel
functions of the first kind and trigonometric functions, as follows:

00 00

<P(j) = L (AnI + iBn 1)(lXnI + if3nl)+ L (A n2 + iBd(lXn2+ if3n2)
n=O n=O

(12)
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rtnl + if3nl = cosh[( 1- i)f3x]H~1 l[.J(2i)/3r]cos nO

rtn2 + i/Jn2 = sinh[(l - i)f3x]H~1)[.J(2i)/Jr]cos nO. (13)

4.2 Modified boundary conditions

We now reformulate our boundary conditions (6a) and (6b) in powers of 1:, as follows;
The details of the derivation of basic membrane stress resultants are given in the

Appendix. These are obtained as power series in 1:. To an accuracy of the order of 1:
2

, the
membrane boundary conditions at r = 1 can be formulated as follows:

N r(j) + Nr(j) = 0

N rOU) + N rO(j) = 0

where j = 0, 1 and 2.
Substituting for N rU) and N rOU) (j = 1, 2) from equation (5) and for N ru ) and N rOU )

(j = 1,2) from the Appendix in the above equations, we obtain the following boundary
conditions for the first and second order approximation in 1::

1(1 cF(1)(o) 1c2 F(1 )(0») _ 2po - 3qo 6po - qo- - ---+- ---- - ----- cos 0+-.---.- cos 30
r6 r cr r 2 c0 2 8 8 '

~(~ cF(I)(j») = 0
cr r cO

wherej = 1 or 2.

~(~ CF(2)(j)) = 0
cr r cO

where j = 1,2.

(14)
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for internal pressure case

The boundary conditions for bending solutions at r = 1 given by (6b) can be written as

Mr(o) = 0

f.
2n

o Q~O)r dO = nr6P,

Q~O) = 0

M rlj) = 0

f.
2n

o Q~j)r dO = 0

Q~j) = 0

for axial tension case

(j = 1,2)

for internal pressure case (j = 1,2)

for axial tension case (j = 1, 2).

(15)

5. FIRST APPROXIMAnON

We now proceed to evaluate 1J(l)' i.e. the first approximation in I;.

The particular integral for 1J( 1) is obtained by substituting for 1J(01 on the right hand side
of equation (II b). The function 1J(O) is of the form

1J(O) = ~O) - imF(o)
where

~O) = fi2 In fi . ~O)( I) + 1'l2~O)(2)

+ (J4 In I'l . ~O)\3)+ ...

F(o) = F(o)(o) + 1'l2 In I'l . F(o)( I)

+ I'l 2F\O)\2) + I'l4 1n fi . F\O)(3) + ....
The equation (11 b) becomes

V4Fi, +Sif:J2 iJ21J(l) = f:'j2 m[SX <J
2
F\o)\o)

'1'( 1) iJx2 iJx2
16y iJ2 F(O)(O)] + O(fi4 In I'l).

iJx. <Jy
(16)

The particular integral corresponding to this is to be assumed as

1J(l) = 1'l21J(l )\2) + fi4 In f'l . 1J(l )(3) + ...

Substituting this in equation (16) and equating coefficients of like powers of I'l we obtain

V 4 Fi, = m[sx iJ
2

F(O)(o) _ 16y <J
2

F(O)(O)] (17)
'1'(1)(2) ::1 2 ::1::1

uX uX.uy

For the sake of convenience, we rewrite equation (17) in polar co-ordinates;

4 [ <J
2

F(OHO)V 1J(lH2) = m 2(cos 0+3 cos 30)r 2
iJr

+6(cos O-cos 30)(<JF(OHO) +~ iJ
2

F(OHO») (1S)
iJr r a02

+4(3 sin 30-sin e)(~ iJF(o)(o) _ a
2
F(O)(O»)].

r iJO iJr . iJO
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5.1 Membrane stresses

It is evident from equation (16) that the particular integral of <P(1) to our degree of
approximation in 13, contains only real part thus contributing to only bending stresses, i.e.
the membrane stresses involving G can be evaluated only from the complimentary solution.
The number of terms to be considered in (12) depends upon the desired degree of accuracy,
whereas the choice of particular terms depends upon the boundary conditions. For this,
one has to examine the expansions for OCnl , f3nl , OCn2 and f3n2 and choose in equation (12)
those values of n which can contribute the appropriate terms necessary to satisfy the
boundary conditions. The associated arbitrary constants in equation (12) are also taken
in the form of series in powers of 13 and products of powers of 13 and log 13 in such a way
that all the boundary conditions can be satisfied.

Separating the real and imaginary terms in equation (12), we get the stress function
in the form

• cos 8 cos 38 cos 38
F(I) == AI --+A2--3 -+A3--

r r r

2 [cos 8 cos 38 cos 38J+13 Inf3 A4 --+A5--3 -+A6--
r r r

2 [1t(A 3 - AI) 8 cos 8+ 13 r cos + A7--
4 r

cos 38 cos 38J+As--+A9--
r3 r

where Al to A 9 are independent constants, which can be evaluated from the boundary
conditions, equation (14).

A
3qo-2po 2

1 == ro16

and all the constants A4 to A 9 vanish individually. The membrane force NO(1) is now
calculated from

(6Po-qo) (3qo-2po) cos 8
+ 8 r cos 38 + 8 ~

qo - 6po cos 38 (6po -qo) cos 38
2 -r-5 -- 8 -r-3 - (19)
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5.2 Bending stresses

The particular integral of ~l) from equation (18) is given by

W(1)(1) [particular integral] = 0

" 2[-(6Po+Qo) 3W(1)(2) [particular mtegral] = mro 16 r log r cos 0

The complimentary solutions for W(l) are given by

W(l)(l) (complimentary solution) = mr5[ C1 (2PO;Qo)]rcoso

~1)(2) (complimentary solution) = mr5[c1r( In ~;) cos 0

+ C2 {) (2po+Qo) (1 yr) Il-cosurn / cos u
r 8 ....;2

(lOPo+Qo) Cs Co
4

rcos 30+ 3 cos 50+-s cos 50
6 r r

The complete solution for W(l) is given by

where

W(l)(j) = W(l)(j) (particular integral)

+ W(l)(j) (complimentary solution)

wherej = 1,2

1003
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The constants C I, C2 .. , C6 are determined from boundary conditions (1S) and are given
below:

C
1

= _Po
2

[6pofll +4v) + Sqo(2+ v)]
C2 = --------

48(1- v)

C _ [Po04+8v)+qo(12v-19)]
3 - 48(3+ v)

[2po(6v2
- 12v -10) +qo(S7v2

- 84v + lIS)]
C4 = -------c--------

18(1-v)(3+v)

C _ [120po + Sqo(v -7)]
5 - 480(3+v)

C _ [6po(Sv -17) + Sqo(7 - 3v)]
6 - 960(3+ v) .

From equations (S), the expression for M~(l) becomes:

MT - D f32[- e{(7+3V)(6Po+ qo)~
9(1) - rn cos 16 ,3

(6Po+qo)(1 +v) 1 (6Po+qo)
+ 8 ~+ 16

x [(2+6v) logr+(Sv+ 1)],I-cos 3e

x {4Po(6V 2 -12v-1O)+ 2qo(S7v2
- 84v + lIS) ~

3(3+v) ,5
[lOpo(1 +v)+Sqo(Sv-7)](S-v) 1

+ 48(3 +v) ,3
_po+qo) ~+ (13qo-2po)[(Sv+ 1)-6(1- v) In '],}

2 , 48

{
[6Po(SV-17)+Sqo(7-3V)](1-V) 1

- cosso 32(3 + v) , 7

[24Po+qo(v-7)](7 -3v) 1+ -
24(3 + v) ,5

(6po-qo)(v-13) 1 qo 1
+ 48 ,3+4 ~

(qo - 2po)(3v -II) }]
+ 32 ,.
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6. SECOND APPROXIMATION

1005

In equation (lIe), we substitute
cP(O) = J1.(0) -imF(o)

cP(1) = J1.(l)-imF(I)

where J1.(0) and F(o) are ofthe form given in Section 5 whereas J1.(l) and F(I) are of the form

J1.(l) = f32 In f3 . J1.(1)(1) + f32J1.(1)(2) + ...

F(I) = F(1)(0)+f32 In f3.F(l)(l)+f32F(l)(2)+ ....

It then follows from equation (lIe) that the particular integral for cP(2)(2) to our degree of
approximation in f3 contains only real part and hence does not contribute to the membrane
solution. We now proceed t{\) ,obtain the membrane solution in second approximation in e
using only the complimentary solution.

Proceeding along the same lines as given dO Section 5.1, we get an expression for the
stress function F(2) in the form

cos 28
F2 = B 1'mp+B2+B3 1n r+B4 cos 28+Bs--2­

r

cos 48 cos 48 2 [
+B6--4-+B7--2-+f3 Inf3 Bs +B9 lnr

r r

cos 28 cos 48 cos 48]
+ B 10 cos 28 + B 11 --2- + B 12 --4- + B13--2-

r r· r

2[ n 2+ P B 14 +B1sln r-4(B4+B3 )r +B 16 cos 28

cos 28 n , 2 cos 48
+B17-~2---8(2B4+B3 )r cos 28+B1S-~2-

r r

cos 48] 2 2
+B19~ +p (lnp) B20 ·

We can evaluate the arbitrary constants in the above equation from boundary con­
ditions (14).

(2po +3qo)r6

32

B _ (3qo-6po)r6
4 - 32

B _ (2po-qo)r6
S - 16

B _ (3q 0 - 30po)r6
6 - 128

(I Opo - q0)r6
B 7 = 32 .
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(20)

All the constants B8 to B 13 vanish individually

2
B _ nporo

15 - --8-

n(3qo -14po)r6
B 16 = 128

n(l4po - 3qo)r6
B 17 = 256 '

The constants B18 and B19 also vanish individually. We can now obtain an expression
for the membrane stresses in the e2 approximation from the stress function F(2)'

NT _ (2po +3qo)(3 2 +~)+(6po - 3qo)( 2 +1) 2()
0(2) - 32 r r2 8 r r4 cos

(3QO-30Po)( 2 2 5) 40+ r --+- cos
32 r4 r6

+n{32[PO( 1+~) +(l4po - 3
Qo)( 1+~) cos 2()],

8 r2 128 r4

The evaluation of bending stresses in the e2 approximation involves very tedious
algebra, But a careful examination shows that the magnitude of these stresses is very
insignificant. The real part of </1(2) involves {32 terms and hence the bending stresses in the
second approximation include the term e2{32. It can be seen from equation (7) that for a
cone angle even as large as 90° (IX ~ 45°), e is only of the order of (h/R o)! which is quite
small for a thin shell. In other words, in practice, e will be smaller than {3 itself i.e. e2{32
will be smaller than {34, Since, we have already neglected terms involving {34 In {3 every­
where, we are justified in omitting the bending stresses in the e2 approximation.

7. COMPLETE SOLUTION

The complete solution to the problem up to terms including e2 can be written by
adding the zeroth, first and second approximation solutions. Since the only non-vanishing
stress along the boundary of the hole is (Jo, we derive here expressions only for this stress
component at r = 1.

where the subscripts m and b denote membrane and bending solutions.

T 1[NT NT 2NT]
(JO(m) = Ii 0(0) +e O( 1) +e 0(2)

The expressions for N~o) and M~o) can be taken from the corrected Lurie's solution.
Complete expressions for the membrane and bending components of (Jo at r = 1 are
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T (2po + 3qo)
[hO"O(m)Jr=t = 2 +(qo-2po) cos 2e

nf32
+4[4qo+(5qo -2po) cos 2e]

e2

+ 32 [(8po+ 12qo)+(48Po-24qo) cos 2e

+ (12qo -120po) cos 4e

+ nf32{8po +(14po - 3qo) cos 2en

T 3(1 + V)f32 [ yf3 9qo Po
[hO"O(b)]r=t = [3(1-v2)J! 4qo InJ2+T-2

+{qO (l9+41v)_po (7+5v)
12 (3+v) 6 (3+v)

yf3 (1-V)}
+In -/2(2Po-5Qo)(3+v) cos 2e

(2po -qo)(l - v) 4eJ
+ 4 (3+v) cos

3(1 + V){32e [5(6PO +qo) e
- [3(1 - v2)Jt 8 cos

cos 3e
+ 24(3 + v){Po(2v - 34)+ llqo(l + 7v)}

cos5e J+ 12(3 + v) (1- v)(12po - 5qo) .

8. DISCUSSION

1007

It is interesting to note that e order term in the membrane stress NJ is independent
of (3 as in equation (19). This is due to the fact that the constants A 4 to A 9 in the expression
for F(t) vanish individually and also the non-vanishing r cos e term does not contribute
any stress in the shell. But, the e2 approximation term in N~T) does depend on f3 as in
equation (20).

The membrane and bending solutions have been obtained to an accuracy of the order
of {32 and e2

. These have been plotted in Figs. 3-6 for {3 = 0·3 and e = 0,0·04 and 0·069.
These different values of e correspond to semi-cone angles of 0°, 30° and 45° for a shell
whose Ro/h is 46·2. The Poisson's ratio is assumed to be 0·3. The variation of stresses in
the conical shell from the cylindrical shell is observed to be more in the case of axial tension
loading than in the case of internal pressure.
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180·

£=0·069-­
£-0·04 ----­
e-o·o ----

90·
e·

2

3

o+--..---.--.......fI-....,..--r--..,...-..---..---.-....,..--r--...,....-....--,...--4.--....,..-......-...,

o
0.

"~

FIG. 3. Membrane stresses due to axial tension (/3 = 0·3).

!!
<I>
b

0'1

0+--.....-1""""......-....,..-......-.....-"'"""""-..---,.--....,..-.,...--'1'''*-.,....-,...---,-....,..-......--,

-0·1

-0·2

-0·3

FIG. 4. Bending stresses due to axial tension (/3 = 0-3).
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O-+--r----.--.,...-r--.....,.-.,...-,.---r--,--.,.....--r--,--.,.....---,-.....,..-.,.....-r--..,
o 90· ISO.

S·

FIG. 5. Membrane stress.es due to internal pressure (/J = 0'3).

-0·7

-0·75

FIG. 6. Bending stresses due to internal pressure (/J = 0·3).
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APPENDIX

DERIVATION OF BASIC STRESSES N r , No AND Nro

Consider a conical shell as shown in Fig. l(b) closed at both ends and subjected to a
uniform internal pressure P and an axial load of P. Then from equations of equilibrium,
it is possible to show that the membrane stresses are given by

where

N- Po qO(1 2 f) 2 2)l
S = (I f) 2 2 l +-2 + er cos + £ r 2+ 2£r cos + £ r ) 2

N", = qo(l +2£r cos f) + £2 r2)+

Ns'" = 0

P

(AI)

(A2)

Po = 2nRo cos2(X •

We shall now calculate N" No and Nro from the above stresses by using the transformations

Nr = i(Ns+N",)+i(Ns-N",) cos 2A

No = i(Ns+N",)-i(Ns-N",) cos 2A

Nro = -i(Ns-N",) sin 2A

where A is the angle between sand r (see Fig. la).
It is possible to show that

(cos 2f) +2£r cos f) +£2 r2)
cos 2A = - ----=---____=__--;,.---;;-:-

(l +2£r cos f) +£2r2)

. , (sin 2f) +2er sin f))
sm 211. = .

(l + 2er cos f) + £2r2)

By substituting (AI) and (A3) in (A2) and neglecting terms of order e3
, we get,

N = 3qo +2po +2po -qo cos 2f)
r 4 4

+ {(3qO - 2po) f) + (qo - 6po) 3f)}sr 8 cos 8 cos

S2 r2

+3T{(2Po + 3qo) + (30po - 3qo) cos 4f)}

(A3)
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N
- 3qo+2po qo-2po 2()

6 = +----COS
4 4

+ {
(9qO - 6po) ()+ (6po -qo) 3()}

er 8 cos 8 cos

e2r2

+3f{(6Po + 9qo)+(24po -12qo) cos 2()+ (3qo - 30po) cos 4()}

N
- (qo - 2po) . 2()

,6 = 4 SIn

+ {
(6PO-qO). 3()+(3qo-2Po) . ()}

er 8 SIn 8 SIn

e2r2

+3f{(l2Po -6qo) sin 2() + (3qo - 30po) sin 4()}.

(Received 26 July 1967; revised I I March 1968)
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A6cTpaKT-Dpe,lJ,CTaBJUIIOTCR aHaJII1TI1'leCKl1e peWeHI1R ,lJ,JIR HanpRlKeHI1H B nOJIorl1X, KOHI1'leCKI1X o6oJI­

O'iKaX, 06JIa,lJ,a101ll11X KpyrJIblM oTBepCTl1eM Ha 60KOBOH nOBepXHOCTI1. 060JIO'lKa 3aMKHyTa Ha 06ex

Topllax 11 HarpylKeHHa paBHOMepHblM oceBblM paCTRlKeHl1eM 11 BHyTpeHHI1M ,lJ,aBJIeHl1eM, KOTopble ypaBHo­

BepweHHbl TOJIbKO pacnpe,lJ,eJIeHHbIMI1 nOnepe'lHbIMI1 CI1JIaMI1 C,lJ,Bl1ra Ha KpaRX OTBePCTI1R. MeTO,lJ, paC'IeTa

B03BO,lJ,I1T BCTeneHb B03MYllleHI1R napaMeTpOB, onl1CI1BalOIlll1X KPl1BI13HY Ii yrOJI KOHyCHOH 060JIO'lKI1 (f3 Ii

£ OTHOCliTeJIbHo) . .uJIR MaJIbIX 3Ha'leHliH 3TI1X napaMeTpoB onpe,lJ,eJIRIOTCR cYlllecTBeHHble MeM6paHHble

Ii MOMeHTHble HanpRlKeHliR, C TO'lHOCTblO ,lJ,0 '1JIeHJIB nOpR,lJ,Ka f32 Ii .2.


